Trigonometric functions in Octave
In this lesson I'll explain how to calculate trigonometric functions in Octave with some practical examples.
The trigonometric functions of sine, cosine, tangent, cotangent have as argument x an angle expressed in radians. For example, 90° is written π/2 in radians. An entire 360° round angle is equal to 2π, etc. The inverse trigonometric functions arcsine, arccosine, arctangent, arccotangent take the sine, cosine, and tangent value as arguments.
Sine
To calculate the sine of an angle x type the function sin(x)
>> sin(pi/4)
ans = 0.70711
Arcsine
The inverse function of sine is the arcsine asin(y)
>> asin(0.70711)
ans = 0.78540
The arcsine function returns the angle in radians. It is exactly the decimal value of π/4 $$ \frac{\pi}{4} = 0.78540 $$
Cosine
To calculate the cosine of an angle x use the function cos(x)
>> cos(pi/3)
ans = 0.50000
Arccosine
The inverse function of cosine is arcsine acos(y)
>> acos(0.5)
ans = 1.0472
The arcsine function returns the angle in radians that determines the cosine value y=0.5. $$ \frac{\pi}{3} = 1.0472 $$
Tangent
To calculate the tangent of an angle x type tan(x)
>> tan(pi/4)
ans = 1.00000
Arctangent
The inverse function of the tangent is the arc tangent atan(y)
>> atan(1)
ans = 0.78540
The arctangent function returns the angle in radians that determines the y=1 value of the tangent. $$ \frac{\pi}{4} = 0.78540 $$
Cotangent
To calculate the cotangent of an angle x type cot(x)
>> cot(pi/4)
ans = 1.0000
Arccotangent
The inverse function of the cotangent is the arccotangent acot(y)
>> acot(1)
ans = 0.78540
The arccotangent function returns the angle in radians that determines the y=1 value of the cotangent. $$ \frac{\pi}{4} = 0.78540 $$
Secant
To calculate the secant of an angle x type sec(x)
>> sec(0)
ans = 1
Arcsecant
The inverse function of the secant is the arc secant asec(y)
>> asec(1)
ans = 0
The arcsecant function returns the angle in radians x=0 that determines the value y=1 of the secant
Cosecant
To calculate the cosicant of an angle x type csc(x)
>> csc(0.5)
ans = 2.0858
Arccosecant
The inverse function of the cosecant is the arc cosecant acsc(y)
>> acsc(2.0858)
ans = 0.50000
The arccosecunt function returns the angle in radians x=0.5 that determines the value y=2.0858 of the cosecant.